PyTorch | Installing and config

What is PyTorch

In short PyTorch is a Python based machine learning library maintained by Facebook’s AI Research lab as an open-source project that supports execution on CPU/GPU/TPU and uses AD (Automatic Differentiation).

In practice, PyTorch works really well together with numpy, scikit-learn, and Pandas.

Originally, PyTorch grew up from Torch library made for the Lua programming language.

Install PyTorch

If you use Jupyter (Anaconda) goto this page and select Conda to get the code. For my case it was:

!conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch

Check PyTorch config and environment

These may be your first lines of PyTorch if you print the version and environment data:

import torch
print(torch.__version__)
print(*torch.__config__.show().split("\n"), sep="\n")

Out:

1.6.0+cu101
PyTorch built with:
  - C++ Version: 199711
  - MSVC 192628806
  - Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191125 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v1.5.0 (Git Hash e2ac1fac44c5078ca927cb9b90e1b3066a0b2ed0)
  - OpenMP 2019
  - CPU capability usage: AVX2
  - CUDA Runtime 10.1
  - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_37,code=compute_37
  - CuDNN 7.6.4
  - Magma 2.5.2
  - Build settings: BLAS=MKL, BUILD_TYPE=Release, CXX_FLAGS=/DWIN32 /D_WINDOWS /GR /EHsc /w /bigobj -openmp:experimental -DNDEBUG -DUSE_FBGEMM -DUSE_VULKAN_WRAPPER, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, USE_CUDA=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=OFF, USE_NNPACK=OFF, USE_OPENMP=ON, USE_STATIC_DISPATCH=OFF, 

CUDA

CUDA is acronym for Compute Unified Device Architecture. It was developed specifically for NVIDIA GPUs.

The core of CUDA is Deep Neural Network library or cuDNN that helps programmers do deep learning.

PyTorch has torch.cuda package for working with GPU. One of the first commands would be to check if you have CUDA powered device:

import torch
print(torch.cuda.is_available())

Out:

True

If the result is True you have CUDA powered device, or you have the GPU unit. Here is GPU device checker code:

import torch
dev = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
dev

Out:

device(type='cuda')

You can also check the number of CUDA devices with the next command.

torch.cuda.device_count()

The list of things you can do via the package torch.cuda is huge.

Optionally, it comes handy to set the CUDA parameters from operating system:

import os 
os.environ['CUDA_VISIBLE_DEVICES']='1'
os.environ['CUDA_LAUNCH_BLOCKING']='1'

Check the GPU memory

If you have the GPU unit, you can check the GPU memory. You may write:

!nvidia-smi

Out:

Fri Jun 26 15:33:03 2020       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 450.36.06    Driver Version: 418.67       CUDA Version: 10.1     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  Tesla K80           Off  | 00000000:00:04.0 Off |                    0 |
| N/A   35C    P8    25W / 149W |      0MiB / 11441MiB |      0%      Default |
|                               |                      |                 ERR! |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

The available memory on GPU is 11441MiB.

Jupyter notebooks

Jupyter notebook is where Python/PyTorch programmers live nowadays. It is based on an open-source project.

Jupyter notebook have been used for writing this book.

Google provides Google Colaboratory project where you can use Jupyter notebooks for free.

Check also the 16 Google Colab Tricks.

tags: installation & category: pytorch